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Overview

The following applications were used to perform benchmarks:

1. High-Performance Linpack (HPL) [32] (Sec. I)

2. High-Performance Conjugate Gradients (HPCG) [19] (Sec. II)

3. Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [34] (Sec. III)

4. Vienna Ab Initio Simulation Package (VASP) [23,24] (Sec. IV)

5. Amber

6. Machine Learning (ML) Applications/Benchmarks (Sec.VI)

(a) AI-Benchmark (based on Tensor�ow) [20]

(b) PyTorch-Benchmark [36]

(c) The use of Convolutional Neural Networks (CNN) to discern di�erent lymphoma types. [26]

7. Containers (Sec.VII)

8. IO (Sec.VIII)
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I High-Performance Linpack Benchmark

The High-Performance Linpack Benchmark (HPL) executable was generated from source (HPL version 2.3) [32].

I.1 HPL runs on CHPC

The executable for the CHPC was generated using Intel Parallel Studio XE Developer Suite (2018.1.163) [21]). The
HPL Benchmarks were run on nodes notch139 and notch192.

The node notch139 has the following characteristics:

• Model Name CPU: Intel(R) Xeon(R) Gold 6230 CPU @ 2.10 GHz - Dual socket - 40 physical cores

• Memory: 192 GB

The node notch192 has the following characteristics:

• Model Name CPU: AMD EPYC 7702P - 64 physical cores

• Memory: 256 GB

A series of preliminary HPL iterations were performed on notch139 to optimize the HPL simulation parameters.
The energy used during each HPL run was recorded from the outlet feeding solely notch139, as reported by the
Power Distribution Unit (PDU). In total 10 identical HPL runs (using 40 MPI Tasks) were performed.

The HPL run-time parameters were also optimized for notch192. The �nal run with the optimized parameters
was repeated six times (using 64 MPI Tasks). The use of the MKL AVX2 kernels on the AMD CPU was enforced
through MKL_DEBUG_CPU_TYPE=5 [14].

I.2 HPL Runs on AWS

The HPL executable was generated using Intel Parallel Studio XE Developer Suite (2020.4.304). The HPL Bench-
marks were run on a node of the type c5n.18xlarge (AWS Region: US West (Oregon)). Its CPU was of the following
type: Intel(R) Xeon(R) Platinum 8124M CPU 3.00GHz - 36 physical cores.

We again optimized the HPL input parameters. Subsequently, we performed 6 identical HPL runs.

I.3 HPL Runs on AZ

The HPL benchmarks were run on 2 di�erent types of nodes: HC44rs and HB120rs_v2. The former has an Intel
Xeon Platinum 8168 CPU @ 2.7 GHz (containing 44 cores); the latter an AMD EPYC 7V12 CPU (120 physical
cores). None of these Azure nodes supported hyperthreading.

Both HPL executables were compiled and executed using the Intel Parallel Studio XE Developer Suite (2020.4.304).
However, in the latter OpenBlas was linked into the executable instead of Intel's MKL. All the HPL parameters were
optimized. The �nal runs (with its optimized parameters) were executed six times.

I.4 HPL Runs on GCP

The HPL benchmarks were run on 5 di�erent types of nodes: c2-60, n2h-64, n2h-80, n2d-128, n2d-224. The
�rst three belong to the Intel family, but their hardware speci�cs were obfuscated by Google. The latter two nodes
contained AMD processors of the type EPYC 7B12. The number of hyperthreaded cores for each of the aforementioned
processors can be retrieved from the su�x in its resp. name: e. g. c2-60 possesses 60 hyperthreaded cores or 30
physical cores.

All the HPL executables were compiled and executed using the Intel Parallel Studio XE Developer Suite (2020.1.217).
In order to force the use of the AVX2 kernels on the AMD CPUs, we used Daniël de Kok's LD_PRELOAD sugges-
tion [14]. 1. All the HPL parameters were optimized. The �nal runs (with its optimized parameters) were executed
six times.

1Neither the MKL_DEBUG_CPU_TYPE=5 �x nor the LD_PRELOAD trick worked when I used the Intel 2020.4 series. This is why we opted for
the OpenBlas library
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I.5 Results

The results (on-premises) as well as for the three cloud-provides AZ, AWS and GCP are displayed in Table 1. The
mean x (Eq. 1) and the sample standard deviation s (Eq. 2) were calculated in the following way [12]:

x =
1

n

n∑
i=1

xi (1)

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (2)

where xi stands observed value and n for the total number of measurements. In Table 1 as well as other tables the
values for the aforementioned statistics are displayed in the format x± s.

Platform Node Time (s) T�ops Energy Used Cost per run
(kWh) ($)

CHPC notch1392 1350.59± 4.74 1.6660± 0.0058 0.1445 n/a

notch192 2156.52± 0.37 1.5188± 0.0003 0.1599 n/a

AWS c5n.18xlarge 857.41± 6.97 2.3706± 0.0191 n/a 0.926
AZ HC44rs 1812.35± 4.27 2.5231± 0.0059 n/a 1.619

HB120rs_v2 2544.84± 0.65 3.1874± 0.0008 n/a 2.589
GCP c2-60 960.49± 3.83 1.9046± 0.0076 n/a 0.837

n2h-64 187.24± 0.73 1.8230± 0.0071 n/a 0.120
n2h-80 235.93± 1.30 2.0600± 0.0113 n/a 0.188
n2d-128 516.83± 3.17 1.9619± 0.0119 n/a 0.574
n2d-224 855.22± 3.46 2.6310± 0.0107 n/a 1.661

Table 1: HPL Benchmark: Results

I.6 Discussion

The cost per run varies quite widely due to the time it took to �nish the benchmark.

2Sampled 10 times instead of 6 times
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II High-Performance Conjugate Gradient (HPCG) benchmarks

The High-Performance Conjugate Gradients benchmark (HPCG) [18], [16] was intended as a complement to the HPL
software. All our benchmarks used the HPCG 3.1 Binary [19] (the CUDA source is not publicly available) which
had been compiled with GCC 4.8.5 on a Centos7 OS and required the presence of CUDA 10.0.130 and OpenMPI
3.1.x.

II.1 General

On the CHPC clusters we installed OpenMPI 3.1.6. The required version of CUDA was already installed.
On AWS we started with an AWS Parallel Cluster Image that we created to perform calculations on GPU devices

and was Centos 7 based. We downgraded its existing CUDA version 10.2 to CUDA 10.0.130. We also installed
OpenMPI 3.1.6 (libfabrics and CUDA support) on the image to run our simulations.

On AZ we started with a Centos 7.6 image (Cloud Maven Solutions) in which we installed the latest NVIDIA
GPU Driver extension. We subsequently downgraded CUDA to 10.0.130 and installed OpenMPI 3.1.6.

On GCP we �rst created a base GPU image. We started from a Centos 7 image, installed the Intel 2020.1 compiler
suite and the latest CUDA driver (at the time of the image build) i. e. 460.27.04. The same base GPU image was
also used to bake other GPU based images as described in Sections V, VI. We then used this GPU base image to
install the additional requirements for HPCG (i. e.OpenMPI 3.1.6, CUDA 10.0.130, the HPCG binary).

II.2 Results

On the CHPC cluster we ran the HPCG code 6 times on 2 types of GPU devices: Tesla P100-PCIE-16GB and Tesla

V100-PCIE-16GB.
On AWS the tests on a p3.2xlarge node were performed 6 times as well. This type of node contains 8 logical

CPUs and 1 GPU device (Tesla V100-SXM2-16GB). Its enlarged version i. e. p3.8xlarge has 32 logical CPUs and
4 GPU devices (Tesla V100-SXM2-16GB). The tests on the p3.8xlarge nodes were repeated 3 times.

On AZ we ran the tests on nodes of the NCv3 series [30]. This type of node contains x GPU devices (Tesla
V100-PCIE-16GB) (where x ∈ {1, 2, 4}). The corresponding CPU hardware is: 6× x vCPUs and 112× x GB memory.
All simulations on AZ were run 6 times.

On GCP we ran the tests on nodes of the N1 type. Each GPU device (be it a K80/V 100) was matched on the
CPU side with 4 virtual cores and 15 GB Ram. To discern the GCP nodes we used the following nomenclature:
n1-$(4x)cpu-$(y)-$(x)d where $(x) stands for the number of GPU devices; $(4x) is the number of virtual CPU
cores. The string $(y) represents the type of the used GPU device.

In order to run valid simulations (as stipulated in the HPCG manual) we had to run for at least 1 h. For all the
runs a domain size of 256×256×256 was chosen. The number of MPI tasks equals the number of used GPU devices.

The results of the benchmarks (on-premises & cloud) are to be found in Table 2. For the observed values of
the random variables time and G�ops the sample mean (Eq. 1) as well as the standard sample deviation (Eq. 2) are
displayed.

II.3 Pricing

The p3.2xlarge is priced at $3.06/h. The use of a node of the type p3.8xlarge is billed at $12.24/h. Both prices
were recorded at 05/14/2020.

The cost for the use of Standard_NC6s_v3 was $3.06/h. The use of a node of the type Standard_NC24s_v3 was
$12.24/h. On top of that we also paid $0.2340/h for the use of the Centos 7 (Maven Solutions) license.

On GCP the compute cost per hour3 (On-Demand) was calculated as follows:

• n1-4cpu-k80-1d → $0.651643/h

� n1-standard-4 - 15 GB RAM ($0.189999/h) Ref. [9]

� 50 GB SSD - ($0.17/GB/month) Ref. [4]

� NVIDIA Tesla K80 - ($0.45/h) Ref. [5]
3GCP counts 730 hours/month
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# Devices Provider Node Time (s) G�ops Cost per
used (Type/Id) run

1

CHPC notch001 3664.47± 1.88 137.81± 0.07 0.25 kWh

AWS p3.2xlarge 3661.14± 0.33 138.25± 0.04 $3.11
AZ Standard_NC6s_v3 3663.04± 2.81 138.48± 0.08 $3.35
GCP n1-4cpu-k80-1d 3663.34± 0.28 25.82± 0.01 $0.66
GCP n1-4cpu-v100-1d 3661.49± 0.72 138.62± 0.04 $2.73

2 CHPC notch003 3673.90± 2.04 291.48± 0.23 0.50 kWh

GCP n1-8cpu-v100-2d 3660.58± 0.65 291.54± 0.17 $5.25
3 CHPC notch002 3680.34± 2.78 432.07± 0.16 0.75 kWh

4
AWS p3.8xlarge 3660.0± 0.13 575.28± 0.34 $12.44
AZ Standard_NC24s_v3 3657.14± 12.73 570.78± 0.42 $12.67
GCP n1-16cpu-v100-4d 3660.77± 7.27 562.66± 3.67 $10.29

Table 2: HPCG: Benchmark results

• n1-4cpu-v100-1d → $2.681643/h

� n1-standard-4 - 15 GB RAM ($0.189999/h) Ref. [9]

� 50 GB SSD - ($0.17/GB/month) Ref. [4]

� NVIDIA Tesla V100 - ($2.48/h) Ref. [5]

• n1-8cpu-v100-2d → $5.161643/h

� n1-standard-8 - 30 GB RAM ($0.379998/h) Ref. [9]

� 50 GB SSD - ($0.17/GB/month) Ref. [4]

� 2 NVIDIA Tesla V100 - ($4.96/h) Ref. [5]

• n1-16cpu-v100-4d → $10.121643/h

� n1-standard-16 - 60 GB RAM ($0.759996/h) Ref. [9]

� 50 GB SSD - ($0.17/GB/month) Ref. [4]

� 4 NVIDIA Tesla V100 - ($9.92/h) Ref. [5]

II.4 Discussion

The #GFlops achieved per V100 device is very similar for the on-premises case as for the cloud providers. The com-
putational output scales linearly with the number of GPU devices. The Tesla K80 has signi�cantly lower performance
in GFlops. Among the cloud providers GCP provides the lowest price for the use of similar devices. Although the
K80 device is signi�cantly cheaper per unit of time than its V100 counterpart, it is not the best choice to perform
the HPCG benchmarks: the cost to achieve the same output (GFlops) as the V100 devices surpasses the cost of its
V100 counterparts.
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III LAMMPS Benchmarks

III.1 General

The LAMMPS package [34] was designed to perform large scale classic molecular dynamics (MD) simulations. Due to
the parallel nature of the LAMMPS code it has acquired a signi�cant following among the computational chemistry
and computational material science communities.

We used the same LAMMPS source code (version 7Aug2019 [22]) for all simulations unless stated otherwise.
The calculations were (unless stated otherwise) either run in a hyperthreaded mode (HT) i. e. running 2 MPI

processes per physical core, or non-hyperthreaded mode (NOHT) i. e. running 1 MPI process per physical core.
For the simulations the following input �les/systems (based on benchmarks published at the LAMMPS website

[33]) were used:

• polymer: bead-spring polymer melt of 100-mer chains, FENE bonds and LJ pairwise interactions with a 6
√
2σ

cuto� (5 neighbors per atom), NVE integration.

• metallic: metallic solid, Cu EAM potential with 4.95 Å cuto�, NVE integration.

• lj: atomic �uid, Lennard-Jones potential with 2.5σ cuto� (55 neighbors per atom), NVE integration.

III.1.1 CHPC

The on-premises calculations were run on the nodes containing the AMD EPYC 7702P processors belonging to the
notchpeak cluster. The LAMMPS code on the CHPC cluster was compiled using the Intel Compiler Suite (version
2019.5.281).

III.1.2 AWS

On the AWS cloud, we started with a Centos 7 image. Due to poor performance we switched to the Amazon Linux
2 OS 4 The codes which ran (with the Elastic Fabric Adapter (EFA) [15] support) on the c5n.18xlarge nodes were
compiled using the Intel Compiler Suite (version 2020.1.217) and Amazon's libfabric module.

III.1.3 AZ

The LAMMPS calculations on AZ were performed on the HC44rs nodes (as described in Section I). We started with
OpenLogic Centos 8.1 image. In a subsequent step we installed the Intel Compiler Suite and other dependencies. We
then used the Intel Compiler Suite (version 2020.4.304) to compile the LAMMPS and VASP codes. In a subsequent
step we generalized the VM to create a new computational image. In order to run the multinode calculations we
used Azure's CylceCloud service/framework [29] with our newly created computational image.

III.1.4 GCP

The image used to perform the GCP calculations was built on top of a Centos 7 base image. In a �rst step, the Intel
Compiler Suite (version 2020.1.217) and its dependencies were installed in the image. In a subsequent step, the
LAMMPS and VASP codes were built from source. This newly created image was then stored within the Google Cloud
and used as base image to setup a GCP Slurm Cluster [8] using Hashicorp's Terraform framework [17]. The LAMMPS
simulations were run on a variety of GCP nodes: c2-60, n2h-64, n2h-80, n2d-128, n2d-224 where the last number
stands for the number of virtual cores. For each type of aforemntioned GCP nodes we created two di�erent Slurm
partitions (NOHT, HT) in the Slurm/Terraform framework.

4We discussed the poor performance of the scaling of the LAMMPS simulations with the Amazon engineers. The lack of performance
was due to 2 bugs i. e.:

1. Kernel bug in RHEL7/Centos7.

2. Bug in Amazon Linux/RHEL/CentOS with EFA - we used this workaround:
sudo bash -c 'echo 5128 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages'
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III.1.5 Rescale

Some of the LAMMPS calculations (as well as some of the VASP calculations (See Section IV) were run on the Rescale
cloud. The Rescale environment allows users to easily perform HPC calculations using a graphical user interface
(GUI). To automate we wrote a publicly available package to ful�ll this task (i. e. submit, check, delete, modify jobs
and upload the inputs and download the results). The Python package and corresponding examples can be found at:

• https://github.com/wcardoen/reschpc

• https://github.com/wcardoen/reschpc-examples

On the Rescale cloud our LAMMPS jobs were submitted to the AZ nodes carbon (we were only granted (free) access
to the AZ nodes).

III.2 Results of the LAMMPS runs

Table 3 contains the results for the Polymer simulation. Table 4 presents the results for the Metal case. Table 5
presents the results for the Lennard-Jones system. Each MD simulation was run for 5, 000 time steps. We also ran
the same molecular systems for 50, 000 time steps. The results are not presented in this document because they show
essentially the same pattern.

III.3 Discussion of the LAMMPS results

From the timings displayed in Tables 3, 4 and 5 we can infer that the strong parallel scaling on the CHPC, AZ and
Rescale instances is performing better than on the AWS and GCP counterparts due to the presence of In�niband
interfaces. The strong scaling on AWS is not performing as well as on the former clusters but it clearly outperforms
its GCP counterpart where an advanced network interface is lacking. On the GCP clusters the simulations on the
instances of the type c2-60 and n2h-64 seem to scale better. From a pecuniary perspective (LAMMPS case-study) we
can conclude that:

1. Among the three cloud providers AZ makes it worthwhile to do HPC computations. We experienced a rather
small increase of the cost per job when running on multiple nodes (combined with a decrease in walltime).

2. The return of using a larger number of nodes on GCP is low.

3. The behavior of the AWS cluster was closer to the AZ case than its GCP counterpart but still not as good as
in the AZ case.
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IV VASP Benchmarks

IV.1 General

The Vienna Ab initio Simulation Package (VASP) [23,24] has been designed to model materials based on quan-
tum mechanical calculations (pseudo-potentials, projector augmented wave method and plane wave basis sets).
Although the density functional method (DFT) forms the corner stone of the code, VASP o�ers some more advanced
methods to treat electronic correlation.

All the VASP simulations were performed using VASP (version 5.4.4). We performed calculations on the following
systems:

1. Medium benchmark: HfO2 with 96 atoms (32 Hf atoms and 64 O atoms) per unit cell.

2. Large benchmark: TiO2 with 540 atoms (180 Ti atoms and 360 O atoms) per unit cell.

The input �les for the aforementioned benchmarks were previously published on the TeraGrid website.

IV.1.1 CHPC

The on-premises calculations were run on the nodes containing the AMD EPYC 7702P processors belonging to the
notchpeak cluster. The VASP code installed on the CHPC cluster was compiled using the Intel Compiler Suite
(version 2017.4.196).

IV.1.2 AWS

On the AWS cloud, we started with the Amazon Linux 2 image (for identical cause as described in III.1.2). The VASP
code which ran (with the Elastic Fabric Adapter (EFA) [15] support) on the c5n.18xlarge nodes were compiled
using the Intel Compiler Suite (version 2020.4.304) and Amazon's libfabric module.

IV.1.3 AZ

The VASP calculations on AZ were performed on the HC44rs nodes (as described in Section I). The images to perform
the simualtions was described previously in III.1.3. We used Azure's CylceCloud service/framework [29] with our
newly created computational image to run the simulations.

IV.1.4 GCP

The image used to perform the VASP calculations on GCP was described earlier in Section III.1.4. The VASP

simulations were run on a variety of GCP nodes: c2-60, n2h-64 where the last number stands for the number of
virtual cores. The Slurm Cluster was again set up using Terraform (as in the LAMMPS case).

IV.2 Benchmark results & Discussion

The VASP results for the Medium molecular system are to be found in Table 6. The results for the Large molecular
system/benchmark are to be found in Table 7. Quite a few data points are missing due to a variety of reasons:
crashes, mismatch number k-points and MPI tasks, numerical instabilities (e. g, numerical loss of the hermiticity of
the Hamiltonian, linear dependencies, etc.)

In the medium benchmark the wall time of the simulation increases when using 4 or 6 nodes. Single run nodes
appear to be the most cost e�cient. The situation is similar for the large benchmark.
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Platform Node Type Av. RunTime (s)/Cost($)
1 Node 2 Nodes 4 Nodes 6 Nodes

CHPC AMD (NOHT)
457.03± 0.85 s 262.62± 0.78 s 172.15± 1.59 s 163.27± 1.28 s
0.033550kWh 0.018643kWh 0.011856kWh 0.010781kWh

AWS
c5n.18xlarge (NOHT)

112.20± 0.30 s
$0.485

c5n.18xlarge (HT)
224.18± 1.27 s

$0.484

AZ hc44rs (NOHT)
294.61± 0.76 s 170.08± 1.22 s

$0.263 $0.304

GCP

c2-60 (NOHT)
175.26± 0.86 s 221.22± 4.87 s

$0.614 $1.163

c2-60 (HT)
293.17± 3.92 s 266.52± 6.91 s

$0.514 $0.934

n2h-64 (NOHT)
177.01± 3.71 s

$0.454

n2h-64 (HT)
287.91± 11.99 s

$0.369

Table 7: VASP: Results for the Large Benchmark

14



V AMBER Benchmarks

V.1 General

We used the AMBER 18 [11] and AmberTools19 codes to perform all AMBER simulations. We used the Amber18 RCW
Benchmark Suite [35] to perform the benchmarks (1 GPU device).

V.1.1 CHPC

On the CHPC clusters the AMBER source codes were compiled using the Intel Compiler Suite (v. 2017.4.196) and
CUDA (v. 10.1.168). The simulations were run on the nodes notch086 and notch003.

V.1.2 AWS

On the AWS platform we started with a Centos7 based image. In order to compile the AMBER 18 and AmberTools19

codes, we used gcc (v. 4.8.5), CUDA (v. 10.2) and OpenMPI (v. 4.0.2). The cost to run a p3.2xlarge instance was
$3.06/h.

V.1.3 AZ

On AZ we started with an OpenLogic image (cost $0.234/h) loaded with a Centos 7.9 OS and the NVIDIA Device
Driver (v. 465.19.01). The CUDA version had to be downgraded to (v. 10.2) (as required by the AMBER 18 installation).
To install Amber as such we used: gcc (v. 4.8.5), CUDA (v. 10.2) and OpenMPI (v. 4.1.0) (compiled from source).
The hourly rate for a Standard NC6s_v3 instance was $3.06/h.

V.1.4 GCP

On GCP we started with a Centos7 based image, and �rst installed CUDA 10.2 (highest version allowed by AMBER 18)
and OpenMPI 4.1.0. On top of it we built the AMBER binaries.

V.2 Results & Discussion

The results for the di�erent benchmarks studies are represented in Tables 8, 9, 10, 11, 12. They were all based on
6 measurements except for AWS where we used 3. For the time measurements the average time x (Eq. 1) and the
standard sample deviation s (Eq. 2)are displayed.

From the results in the aformentioned Tables, we can deduce that the calculations on the V 100 devices were the
fastest on the GCP and the AWS instances followed by the V 100 devices on the AZ and the CHPC instances. In
the commercial cloud the best price per run was obtained on GCP, followed by AWS and AZ. For Amber we also
observed several cases of excellent performance (walltime based) on the GeForce RTX 2080 Ti device. The Tesla

T4 card performed quite well (in a �nancial sense) although its corresponding walltimes were rather long.

Provider Node Device type Time (s) Cost

CHPC
notch086 GeForce RTX 2080 Ti 8, 429.42± 18.49 0.782061 kWh

notch003 Tesla V100-PCIE-16GB 7, 585.96± 53.38 0.783332 kWh

AWS p3.d2xlarge Tesla V100-SXM2-16GB 7, 112.87± 26.09 $6.046
AZ Standard NC6s_v3 Tesla V100-PCIE-16GB 7, 556.03± 78.86 $6.914

GCP n1-standard-8

Tesla P4 21, 462.99± 31.88 $4.456
Tesla T4 16, 315.84± 193.42 $4.521

Tesla V100-SXM2-16GB 7, 188.10± 42.80 $5.745

Table 8: Benchmark results (100 ns) for the Jac_Production_NVE - 23, 558 atoms PME (4 fs).
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Provider Node Device type Time (s) Cost

CHPC
notch086 GeForce RTX 2080 Ti 8, 338.90± 205.50 0.773663 kWh

notch003 Tesla V100-PCIE-16GB 7, 208.36± 23.03 0.744341 kWh

AWS p3.d2xlarge Tesla V100-SXM2-16GB 6, 811.55± 151.93 $5.790
AZ Standard NC6s_v3 Tesla V100-PCIE-16GB 7, 145.71± 48.18 $6.538

GCP n1-standard-8

Tesla P4 32, 056.40± 49.43 $6.656
Tesla T4 19, 827.88± 292.12 $5.494

Tesla V100-SXM2-16GB 6, 885.24± 42.15 $5.503

Table 9: Benchmark results (20 ns) for the Factor_IX_Production_NVE - 90, 906 atoms PME.

Provider Node Device type Time (s) Cost

CHPC
notch086 GeForce RTX 2080 Ti 9, 698.06± 17.24 0.899763 kWh

notch003 Tesla V100-PCIE-16GB 7, 608.76± 10.09 0.785687 kWh

AWS p3.d2xlarge Tesla V100-SXM2-16GB 7, 262.54± 3.07 $6.173
AZ Standard NC6s_v3 Tesla V100-PCIE-16GB 7, 518.06± 69.13 $6.879

GCP n1-standard-8

Tesla P4 35, 405.00± 38.57 $7.351
Tesla T4 25, 645.59± 219.73 $7.106

Tesla V100-SXM2-16GB 7, 226.09± 12.01 $5.776

Table 10: Benchmark results (5 ns)f or the Cellulose_Production_NVE - 408, 609 atoms PME.

Provider Node Device type Time (s) Cost

CHPC
notch086 GeForce RTX 2080 Ti 7, 880.96± 200.65 0.731176 kWh

notch003 Tesla V100-PCIE-16GB 4, 736.91± 73.93 0.489138 kWh

AWS p3.d2xlarge Tesla V100-SXM2-16GB 4, 534.31± 56.07 $3.854
AZ Standard NC6s_v3 Tesla V100-PCIE-16GB 4, 682.85± 45.52 $4.285

GCP n1-standard-8

Tesla P4 20, 032.77± 157.00 $4.159
Tesla T4 15, 333.29± 229.78 $4.248

Tesla V100-SXM2-16GB 4, 395.46± 122.05 $3.513

Table 11: Benchmark results (50 ns) for the Myoglobin_Production - 2, 492 atoms GB.

Provider Node Device type Time (s) Cost

CHPC
notch086 GeForce RTX 2080 Ti 28, 275.34± 144.03 2.623318 kWh

notch003 Tesla V100-PCIE-16GB 15, 649.34± 60.08 1.615964 kWh

AWS p3.d2xlarge Tesla V100-SXM2-16GB 14, 819.90± 10.17 $12.597
AZ Standard NC6s_v3 Tesla V100-PCIE-16GB 15, 746.31± 90.15 $14.408

GCP n1-standard-8

Tesla P4 102, 410.11± 182.75 $21.263
Tesla T4 69, 009.58± 1, 172.89 $19.121

Tesla V100-SXM2-16GB 14, 973.14± 87.18 $11.968

Table 12: Benchmark results (5 ns) for Nucleosome_Production - 25, 095 atoms GB.
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VI Machine Learning Applications

We have tested several ML benchmarks.

VI.1 AI Benchmark

VI.1.1 General

The AI Benchmark [20] is an open source python library to evaluate AI Performance on various hardware platforms.
Under the hood it relies on the TensorFlow machine learning library. It contains a wide variety of tests (Recurrent
Neural Nets (RNN), Convolutional Neural Nets (CNN), etc.). The package gauges the performance of the code by
returning a Device AI Score (i. e. the sum of Training and Inference Scores).

The AI Benchmark package requires the installation of the following entities: the NVIDIA Device Driver, CUDA
Toolkit, the CuDNN library, Tensor�ow and the AI Benchmark library. All the tests have been run on 1 GPU device.

The On-Prem results were obtained on an array of di�erent GPU devices. On the Azure Cloud the results were
obtained on a VM of the type Standard_NC6s_v3: 6 vCPUs, Intel Xeon E5-2690 v4 Broadwell and 112 GB
Memory. The GPU Device was a Tesla V100-PCIE-16GB card. The cost/h on AZ had 2 factors: 3.06$/h for the
VM and 0.234$/h for the Centos7.6 license (Maven Solutions).

On AWS all results were computed on an instance of the type p3.2xlarge which contains a 1 GPU Device: Tesla
V100-PCIE-16GB. Its cost was: 3.06$/h.

On GCP, all packages were installed on top of a previously created GPU base image (see Section II). The new
image had the following modi�cations w. r. t. the base image:

• Latest version of miniconda

• CUDA 11.0.2

• CUDNN 8.0.3

• Tensor�ow-GPU 2.24

• AI-Benchmark

In order to run GPU tests we again used nodes of the N1 type. To discern the GCP nodes we use the following nomen-
clature: n1-$(x)vcpu-$(y) where $(x) stands for the number of virtual CPU cores. The string $(y) represents the
type of the GPU device which has been used.

VI.1.2 Results & discussion

The results of the runs are shown in Table 13. A series of 10 independent runs was done for each device. The walltime
on instances containing a Tesla V100 device was the lowest on an on-premises instance, followed by the AZ, AWS
and GCP instances. The cost to perform these run on a Tesla V100 device was the lowest on the GCP instance,
followed by AZ and AWS.

The cost to run the benchmark on GCP's Tesla K80, P4, T4 cards was substantially lower than on its Tesla
V100 counterpart, but its AI score was decreased almost proportionally. When we calculate the cost per unit of
AI-Score the result obtained on a Tesla T4 device outperforms Tesla V100 device.

VI.2 PyTorch Benchmark

VI.2.1 General

The PyTorch benchmark [36] tests the learning and inference speed of various CNN models using the PyTorch
framework [31]. In order to do the tests/comparisons we use the same version of Python (3.8.3), CUDA Version
(10.2) and CuDNN (7605) The timings for each run are an aggregate (several models as well half-precision, single
precision and double precision formats).
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Provider Device Node Device Time (s) Cost per
Type/Id AI Score run

CHPC

GeForce GTX 1080 Ti notch060 20995 636.97 ± 15.86 0.142 kWh

GeForce RTX 2080 Ti notch088 27908 512.02 ± 15.05 0.058 kWh

Tesla V100-PCIE-16GB notch002 31830 523.79 ± 19.91 0.059 kWh

A100-PCIE-40GB notch293 51512 452.89 ± 16.36 0.074 kWh

AWS Tesla V100-SXM2-16GB p3.2xlarge 33658 598.92 ± 4.79 $0.51
AZ Tesla V100-PCIE-16GB Standard_NC6s_v3 33545 527.70 ± 3.34 $0.48

GCP

Tesla K80 n1-8vcpu-k80 6035 1094.22 ± 20.46 $0.26
Tesla P4 n1-8vcpu-p4 10797 797.33 ± 20.56 $0.22
Tesla T4 n1-8vcpu-t4 13437 786.04 ± 13.59 $0.16

Tesla V100-SXM2-16GB n1-4vcpu-v100 32492 596.02 ± 12.27 $0.44
Tesla V100-SXM2-16GB n1-8vcpu-v100 33370 555.00 ± 0.94 $0.44

Table 13: AI-Benchmark: Results

VI.2.2 Results & discussion

The benchmark results are displayed Table 14. The on-Prem results were sampled through 10 independent runs; the
cloud results were sampled through 6 independent runs.

The cost to run the simulation on a Tesla V100 was the cheapest on GCP and the most expensive on AZ. The
cost was the cheapest on the Tesla K80.

Provider Device Node Time (s) Cost per
Type/Id run

CHPC
GeForce GTX 1080 Ti notch060 5640.67 ± 73.61 1.368 kWh

GeForce RTX 2080 Ti notch088 4891.52 ± 32.00 0.605 kWh

Tesla V100-PCIE-16GB notch003 1847.47 ± 14.78 0.225 kWh

AWS Tesla V100-SXM2-16GB p3.2xlarge 1804.59 ± 10.28 $1.53
AZ Tesla V100-PCIE-16GB Standard_NC6s_v3 1800.43 ± 17.27 $1.65

GCP
Tesla K80 n1-8vcpu-k80 4119.77 ± 16.47 $ 0.96
Tesla T4 n1-8vcpu-t4 8363.76 ± 56.73 $ 1.72

Tesla V100-SXM2-16GB n1-8vcpu-v100 1730.15 ± 21.62 $ 1.38

Table 14: PyTorch-Benchmark: Results

VI.3 Lymphoma Benchmark

VI.3.1 General

We also ran a software package (CNN using Tensor�ow) [26] to discern di�erent Lymphoma types (Burkitt and
Di�use Large B-cell). The code ran on di�erent types of GPU devices (CHPC's notchpeak cluster) as well as on
the Azure GPU devices and the GPU devices. In order to run the Lymphoma package we installed on each of the
platforms the following libraries/packages:

• CUDA 10.0.130_410.48

• CUDNN 7.6.2 for CUDA 10.0

• Anaconda3-2018.12

VI.3.2 Results & discussion

The Lymphoma code used only 1 GPU Device but was not very e�cient in its use of the GPU device. Based on the
timing of 1 run on the Standard_NC6s_v3 card, it was computationally and monetarily more advantageous to run
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on a Standard_NC24s_v3 node (and use 1 of the 4 GPU devices) instead of using the Standard_NC6s_v3 node with
its 1 GPU device. We only did 1 run on the Standard_NC6s_v3 node. All runs on the Standard_NC24s_v3 node
were executed 3 times. The runs on CHPC's notchpeak cluster were executed 6 times. All results are to be found in
Table 15.

Provider Device Node Dataset Calc. Time (s) Cost per
(Type/Id) type run

CHPC

GeForce RTX 2080 Ti

notch088
I

1 5087.79 ± 11.17 0.670 kWh

notch088 2 5165.52 ± 68.78 0.667 kWh

notch088
II

1 8735.70 ± 36.26 1.157 kWh

notch088 2 8994.32 ± 68.05 1.154 kWh

Tesla V100-PCIE-16GB

notch002
I

1 7090.12 ± 63.64 0.828 kWh

notch003 2 7574.27 ± 51.30 0.877 kWh

notch002
II

1 12258.02 ± 420.89 0.877 kWh

notch003 2 13292.88 ± 416.82 1.537 kWh

A100-PCIE-40GB

notch293
I

1 1267.93 ± 21.86 0.181 kWh

notch293 2 1267.80 ± 5.86 0.180 kWh

notch293
II

1 1265.47 ± 8.20 0.180 kWh

AWS Tesla V100-SXM2-16GB p3.8xlarge

I
1 7661.52 ± 15.11 $26.04
2 7078.41 ± 259.99 $24.07

II
1 12376.48 ± 1077.69 $42.08
2 12843.91 ± 397.18 $43.67

AZ

Tesla V100-PCIE-16GB Standard_NC6s_v3 I 1 108776.07 $99.53

Tesla V100-PCIE-16GB Standard_NC24s_v3

I
1 4161.35 ± 14.66 $14.42
2 4144.68 ± 10.83 $14.36

II
1 7298.47 ± 19.37 $25.29
2 7124.85 ± 17.16 $24.69

GCP Tesla V100-PCIE-16GB

n1-standard16-2v100 I 1 8631.38 ± 46.27 $13.74

n1-highmem16-2v100

I
1 8145.06 ± 179.97 $13.39
2 8437.17 ± 247.48 $13.87

II
1 14506.39 ± 760.88 $23.85
2 15195.17 ± 139.06 $24.98

n1-highcpu16-2v100 I 1 8756.90 ± 102.81 $13.47

Table 15: Results for the Lymphoma Benchmark
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VII Container

Containers have found a popular audience in the IT world. In the cloud, they can be invoked through a variety of
services (for AWS see e. g. [1], for AZ see e. g. [27], for GCP see e. g. [13]).

VII.1 General

In the past few years NVIDIA started to o�er GPU-optimized containers for AI, Machine Learning and HPC (NVIDIA
GPU Cloud - NGC). The NGC containers can run in either a Docker [28] or Singularity [25] mode.

Besides containers NVIDIA also provided OS images to the main cloud vendors to run its optimized NGC containers.
We used again the LAMMPS version 10Feb2021 software (downloadd from NGC [6]) to generate benchmark

timings. The input �le in.lj.txt which has been used is identical to the one on NGC web site5 with one major
exception: the initial number of time steps was increased from 100 to 50, 000 in order to get more sensible timings.

VII.1.1 CHPC

On CHPC we ran the LAMMPS benchmark (NGC container) using Singularity 3.6.4 and CUDA 11.3.58. We ran the
NGC container on di�erent types and numbers of GPU devices: Ti2080, V100, A100.

VII.1.2 AWS

We used the NVIDIA HPC SDK GPU-Optimized Image (based on Ubuntu 18.04.5 LTS) to run the LAMMPS NGC docker
container. The following AWS instances were used to perform the simulations: p3.2xlarge (1 V100 device),
p3.4xlarge (2 V100 devices), and p3.16xlarge (8 V100 devices)

VII.1.3 AZ

We used NVIDIA GPU-Optimized Image for AI & HPC (based on Ubuntu 18.04.5 LTS) to run the LAMMPS NGC

docker container. The following AZ instances were used to perform the simulations: nc6s_v3 (1 V100 device),
nc12s_v3 (2 V100 devices), nc24s_v3 (4 V100 devices).

VII.1.4 GCP

We used NVIDIA HPC SDK GPU-Optimized Image (based on Ubuntu 18.04.5 LTS) to run the LAMMPS NGC docker
container. The following GCP instances were used to perform the simulations: n1-standard-8, n1-standard-16,
n1-standard-32, n1-standard-64 (with 1, 2, 4 and 8 V100 devices) as well as a2-highgpu-1g, a2-highgpu-2g and
a2-highgpu-4g (containing 1, 2 and 4 A100 devices).

VII.2 Results & discussion

Table 16 contains the results for the LAMMPS NGC benchmark. For the time measurements the average time x (Eq. 1)
and the standard sample deviation s (Eq. 2) are displayed.

In Table 16 we observe that the walltime per run using 1 V100 device is the lowest at AWS, followed by GCP, AZ
and then the on-premises environment. The scaling when using multiple V100 devices is behaving the best at AWS,
followed by GCP and really disappointing in the Azure cloud. From a pecuniary perspective GCP was the cheapest
(to use 1 V100 devices). If we consider also the use of the newest A100 devices we see the excellent scaling on GCP
and on-premises. For the cloud the use of the A100 on GCP is the most cost-e�ective.

5https://lammps.sandia.gov/inputs/in.lj.txt (NVE ensemble, containing 8,192,000 atoms and the use of a Lennard-Jones potential)
6Standard sample deviation
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Provider Node Device #Devices Time (s)6 Cost per Run
type

CHPC

notch271 Ti2080

1 4430.69 ± 12.98 2.534545 kWh

2 2323.68 ± 1.32 1.335266 kWh

4 1589.66 ± 4.17 0.915479 kWh

8 756.68 ± 4.11 0.412538 kWh

notch003

V100

1 1231.02 ± 1.58 0.195453 kWh

notch001 2 679.35 ± 0.29 0.137960 kWh

notch002 3 598.84 ± 0.79 0.130869 kWh

notch293 A100

1 766.61 ± 0.63 0.210526 kWh

2 427.83 ± 1.93 0.173041 kWh

4 251.36 ± 0.79 0.111326 kWh

AWS
p3.2xlarge

V100-SXM2

1 1142.28 ± 1.27 $0.971
p3.8xlarge 4 340.08 ± 6.19 $1.156
p3.16xlarge 8 183.13 ± 1.76 $1.245

AZ
nc6s_v3

V100-SXM2

1 1211.12 ± 0.42 $1.029
nc12s_v3 2 1226.74 ± 4.50 $2.085
nc24s_v3 4 923.25 ± 1.59 $3.139

GCP

n1-standard-8

V100-SXM2

1 1153.53 ± 0.69 $0.917
n1-standard-16 2 643.85 ± 0.65 $1.024
n1-standard-32 4 366.06 ± 0.96 $1.164
n1-standard-64 8 379.67 ± 1.77 $2.413
a2-highgpu-1g

A100-SXM4-40GB

1 738.43 ± 0.48 $0.754
a2-highgpu-2g 2 398.25 ± 0.51 $0.813
a2-highgpu-4g 4 210.92 ± 0.07 $0.861

Table 16: Results for LAMMPS MD Simulation using an NGC container.
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VIII IO

VIII.1 FIO Benchmark

The open-source FIO [10] code was used to test the IO Performance within each of the environments (On-premises
as well as cloud). On each node we tested out the same random read and random write performance (size of 4 kB)
after the initial creation of a 4 GB �le. Each test was run 6 times on each of the nodes.

On-premises, we used the node notch176 and FIO compiled from source (version 3.27) using gcc 10.2.0. In the
Cloud each node ran on the same OS and FIO version i. e. Ubuntu 18.0.4 and FIO 3.10.

AWS and Azure provide instances which are storage optimized for low latency and high random IO performance:
the I3-series [2] and Lsv2-series [7], respectively.

GCP does not provide the same functionality. Therefore, we opted for the instances of the type c2-standard [3]
with a 50 GB local persistent SSD Disk.

The on-premises results were obtained through the use of /scratch/local space.

VIII.2 Results & discussion

Table 17 contains the results of the benchmark described above (SubsectionVIII.1).

Provider Node Time (s)7 Cost per Run
CHPC notch176 2830.65 ± 6.29 0.084340 kWh

AWS
i3.2xlarge 600.76 ± 200.21 $0.104
i3.4xlarge 682.65 ± 0.59 $0.237
i3.8xlarge 683.25 ± 1.87 $0.474

AZ
Standard_L8s_v2 557.92 ± 1.32 $0.097
Standard_L16s_v2 433.08 ± 1.17 $0.150
Standard_L32s_v2 386.93 ± 13.54 $0.268

GCP
c2-standard-8 1522.50 ± 153.26 $0.181
c2-standard-16 1401.26 ± 22.15 $0.330
c2-standard-32 1405.85 ± 17.70 $0.616

Table 17: FIO Benchmark: Results

The run per walltime was by far the shortest on AZ, followed by AWS. The on-premises environment performed
the worst (test performed on /scratch/local). The AZ and AWS results re�ect the presence of high-performance
IO instances. From a monetary perspective AZ o�ers the best result.

7Standard sample deviation
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Conclusion/Final Remarks

All the benchmarks that were run in the Cloud used On-demand type instances. Each of the Cloud providers who
services we used, o�ers alternatives like Spot instances, Reserved instances, dedicated instances (using AWS linguo).
Among these type of instances the On-Demand option is by far the most expensive, but at the same time the least
unambigous (qua instance cost).

Depending on the Cloud provider the calculation of the cost of a run can become non-trivial (the presence of a
hidden costs which are hard to factor in). At the end, the monetary cost becomes clear when the �nal bill arrives.

In the calculation of the cost of the benchmark runs in the Cloud, the personnel cost was not included. Running
simulations in the Cloud requires expertise in di�erent domains: system administration, software installation, net-
working, etc. 
The development of this expertise requires a signi�cant investment. Or with the great freedom of the
Cloud come great responsibilities.
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